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I. INTRODUCTION

" During the spring of 1983, the Ballistic Research Laboratory measured
behind~the-armor effects for several weapons against a variety of targets.
One of the major concerns was heat generation during and immediately following
impact of the warhead against the targets,

Previous tests of this type had used thin skin total heat gages and
standard laboratory heat detectors. Thin skin gages record only the maximum
temperature attained by skins' back surface with no indication of the time
reguired to reach this temperature. Although an approximation of the total
heat deposition can be made, no rate of deposition can be estimated without
knowing the time of the event. The large thermal mass of a tvpical laboratory
detector such as an infrared power meter is designed to mecasure a steady-state
flux and cannot respond quickly enough to register a transient event, Neither
gage type can withstand severe blast and shock environments.

Since the temperature inside the target rose sharply in a very short
time, special,gages were fabricated which emphasized the time response of the
gage rather than its thermsl capacity. This gage is used when the thermal
flux is of short duration, 150 milliseconds or less, and of low total energy,
179 Calcries per square centimeter or less. The maximum operating temperature
of the gage is 500 degrees Celsiuws. . .~~~ ¢+ "’ o co-
T PR P -

II. GAGE DESCRIPTIOR

A. Basic Gage Configuration

The basic configuration of the thermal condustivity gage is shown in
Figure 1. The measuring element of the gage is a thin aluminum disc with a

BOND LAYER

FRONT
THERMOCOUPLE

REAR THERMOCOUPLE

ALUMINUM THERMOELEMENT

Figure 1. Basic Thermal Conductivity Gage Configuration
7
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chromel-alumel thermocouple mounted across the center of each face using a
thermoconducting epoxy. This subassembly is mounted on the end of a ceramic
mandrel which is inserted into the ceramic sleeve so that the front surface of
the disc is ti.sh with the froat of the sleeve., Wires connecting the gage to
any external irstrumentation are anchored to the mandrel and then passed out
the rear of tre siveve. Detailed drawings of the gage are in the Appendix,

B. Design Calculations

Based on the following assumptions and material properties, gage
performance was calculated from the general one-dimensional thermal
conductivity equation,

aT/at = a3 T/3x’ (1
where
= temperature in degrees Celsius;
= time in seconds;

= thermal diffusivity in square centimeters per second; and
= distance in centimeters,

X o

The equation was solved by the graphical method described in Reference 1 and
illustrated in Figure 2, Time response of the gage was calculated by plotting
temperature distribution versus time as heat passes longitudinally through the
different materials in the gage in constant differential increments of time.
This differential time element and the incremental distance through the gage
are related by

) :
Ax® = abt. FRONT THERMOCOUPLE (2)
REAR THERMOCOUPLE
1000 ﬂno ZoNe L
/, . . ’

¢« 600
[&] ALUMINUM MACOR
® h .
W 500 .
400
300
200 ¢
0.07 K
100 .07mm 0.00! mm
4 [N W DA S W S |
' v L LA 1 J T L] L] L v ]
' e 000s 14 .28 .58 582 .584 .586

Figure 2. Thermal Geometry for Calculation

M, Jakob, G.E. Hawkins, Elements of Heat Trausfer, John Wiley

& Sons, Inc., New York, 1958.
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1. Assumptions. The following assumptions were used in the calculations.

a. The heat flow in and out of the gage is parallel to the
longitudinal axis of the gage. Heat flow in the radial direction is
insignificant.

- b, The cement used to bond the thermocouples to the disc has
conductive properties similar to aluminum, The thickness of the bond is
approximately one wire diameter.

¢+ The temperature measured by the thermocouples is assumed to be -
the average temperature in the bond layers.

d. The primary sources of heat are radiant in nature, so film and

.

,"I‘-.' :
ra .
A R

boundary layer effects are ignored in calculating the rhermal response e
characteristics. These effects retard convective and conductive heat transfer N
but do not significantly influence radiant heat transfer. :}:

N

.
4

e. The thermocouple wires are of sufficiently small cross section
and of sufficient length to render heat loss from the gage insignificant
(C.076 millimeters in diameter ana 30 millimeters long).

2. Material Properties. The disc is manufactured from 2024-T4 aluminum
alloy. Both the mounting mandrel and the surrounding sleeve were fabricated
from Macor, an alumina-based, machinable ceramic. Density, thermal
conductivity, and specific heat were obtained from the cited literature.
Thermal diffusivity is determined by the relation

a=k/pC_ . (3) o
P T

The 2024~T4 aluminum properties are:2 e

density (p) = 0.135 gm/sz; i
thermal conductivity (k) = 2.64 Cal/cm sec®C; -
specific heat (C ) = 32,8 Cal/gm®C; and e
thermal diffusivity (a) = 0.597 cm“/sec. E
The Macor properties are:3 :
p = 0,125 gm/smz; t
k= 3,1 x 107° Cal/cm sec®C;
C. = 180 to 200 Cal/gm°C; and o
B =0.11 to0.12 x 10'5 cm?/sec. !!
2 D.A. Maykuth, Aerospace Structural Metals Handbook, Belfour f:
Stulen, Inc,, Coluwbus, OH, 19330, o
: . "

Corning Bulletin, '"Macor Machinable Glass Ceramic,'
Glass Works, Corning, NY, 1981,

Cornting
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The disc is 0.0305 centimeters wide and has a diameter of 0.A25
centimeters. The thermocouple wire diameter and the bond layer thickness are
both 0,0076 centimeters.

3. Respouse Calculation Results. The geometry in Figure 2 and the above
stuted material properties were used in the graphical solution of Eq. (1) for
the conditions of changing surface temperature and conduction layers of
¢iffering materials, Figure 3 shows the response of the front thermocouple to
a surface temperature step rise of one millisecond and Figure 4 shows the
redponse of the same thermocouple to a 250 Hertz sinusoidal surface
temperature vgriation, The shaded portions of the curves show the uncertainty
in the calculations due to variations of the actual material properties and
vagaries introduced by the assumptions,

4, Calculation of Flux Density. The flux density (q') is the sum of the
instantaneous conductive heat flow density (ql) and the differential heat
storage density (q ) . These quantities are Seflned by the following
equations:

q' = q} + q; Cal/szaec; (4)
q% = KAT/Ax Cal/cmzsec; (5)
Q= (sC/2)(8T /At + 8T, /0t)ex Cal/cm®sec; (6)

where T is the front thermocouple temperature and T, is the rear thermwocouple
temperature. The linearity shown in the above equations is true for steady-
state heat flow and for sufficiently small values of 4x. By combining Eqs.
(4), (5), and (6), the following equation is derived for total flux density:

q' = (k/Ax)(Tl - Tz) + (pCpr/Z)(ATl/At + ATZ/At) Cal/cmzsec; (7)

where 8x (= 0,044 cm) is the distance between the two thermocouples.
Evaluating the constants in Eq. (7) yields

q' = 50.0(1‘1 - T2) + 0.097(AT1/At + AT2/At) Cal/cmzsec. (8)

S. Calculation of Total Deposition Density. The total heat deposition (0') is
the time integral of the flux deansity (q').

19
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Q' = [ * q'dt Cal/cem®; (9
: t ‘
> o] f
" ¢
. .
i where (tf - to) is the time interval of observation, This integration yields i
T ) ;
t £ : t £ 2 4
Q' = 60.0f “(T. - T,)dt + 0,097(T, + T,) Ccal/em”, (10) '
t 1 2 1 271t :
0 [+ '

The interval of interest for both thermocouples is the time between the first
rise from the baseline temperature (t ) and the point at which the maximum
temperature is reached (tf) by the front thermocouple, Since the integration
zero time is taken at the start of the event, reference junctions in the data
acquisition syatem are unnecessary as long as the changes in temperature are
referenced with respect to the temperature at time toe

6. Apgroximate Solutions. Since the measurand is s transient and the aft
portion of the gage has a much lower thermal conductivity than the front
portion of the gage, the Jeposition and flux density are actually nonlinear
and of the forms:

q' = F[(1) - 1,), (4T /8t + AT /66)} Cal/cm®sec, (11)

2

and

+ 1)} cal/em® . (12)

e
o' =¢{ [ (T, - T,)de, (T,
t

(4]

The existence of significant levels of interference in the data acquired from
the field make Eqs. (11) and (12) quite cumbersome to evaluate. Simpler
algorithms can be developed based on the limits of Eqs. (l11) and (12) in the
time domain and least squares fits to calibration data,

From Eq. (11), it becomes evident that for short time intervals, the
average temperature in the gage becomes the dowinant parameter, The flux
density can be expressed as:

12
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q' = F{(ATI/At + AT, /8t)/2} Cal/ca’sec, (13)

and the total deposition as:

EREST s )

Q' = G{(bT, + 4T,)/2} Cal/ca’, (14)
where g
ATl - Tl - T1 over the time interval At; !
f ) :
AT, = T, - T, over the time interval At; and L
2 2 2 a
3 ] [
[

At = tf - to, the time interval.

. These approximations resemble the equations for thin skin gagea, except
I for the introduction here of a time variable.

I11. GAGE CALIBRATION

i A. Calibration Procedure

g The gage was calibrated by coumparing its output to the radiant energy |
output of a carbon dioxide laser operating at 10.6 micrometers. A fast-
response photon drag detector was used to measure the laser energy directly;
the laser energy was also calculated from the laser output power and th2 time
duration of the pulse. The power is constant for any one calibration ‘'rial
and the pulse time is equivalent to the current input time, The gage outputs
were recorded through data amplifiers into a transient recording
oscilloscope. The recording components were calibrated against a digital
voltage standard both individually and as a system. Figure S5 shows the
apparatus used in the calibration.

S mm o

B. Agzaratuo

The following is the list of equipment used in the calibration procedure.
1. C02 Laser: Apollo Lasers Inc., Model 500, serial number 10l.

2. Infrared Power Meter: Coherent Radiation Laboratuviles Inc., Jdetactort
serial number 081,

) pia/Asiadating AP PRPRNEN
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3. Germanium Focusing lens: Coherent Radiation Laboratories, Inc.,
10 inch focal length, no serial number.

4. Transient Recording Oscilloscope: Nicolet Corp., Model Explorer II,
serial number 612831,

S. Instrumentation Amplifiers: Dynamics Inc. Model 7525, serial numbers
3543 and 3563.

6. DC Voltage Standard: Analogic Inc., Model AN3100, serial number
71825476,

7. Photon Drag Detector: Rotin, Inc., Model 741D, serial number 081,

GIRMANIUM
R POWER r-9 FOCUSING LENS
v " -
=0 +— @Ej CO, LASER
| .

r"

r 1 IR PHOTOMETER
L J

|

LASER CONTROL
AND

CURRENT WMONITOR QUTPUT

TRIGGER
sooe | POWER SUPPLY

Figure 5. Basic Calibration Set Up

C. Recording System Calibration

The recording system was calibrated on site, in three separate steps.

First, the recording oscilloscope was calibrated againat the voltage
standard on both channels A and B over all ranges. These calibrations,
performed in accordance with the manufacturer's instructions, iacluded both
the recording and the playback systems. This procedure must be completed
before calibrating the instrumentation amplifiers,

Next, the instrumentation amplifiers were calibrated for zero, balance,

linearity, and gain using the manufacturer's procedures as outlined in the
equipment manual. The voltage standard was used as the reference.
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Finally, the acquisition and recording System was assembled as it was to
be used during the tests and checked for ground loop and noise interference.
A ten-step voltage pulse was recorded on every track of each channel. The
pulses were stored on floppy disc and later used to establish calibration and
conversion coefficients for data analysis.

- Figure 6 shows the recording system calibration scheme.

AMP A

DIGITAL I‘.H]_ﬂ_ »

VOLTAGE
STANDARD

e CHANNEL A
~—Pe CHANNEL B § -
TRANSIENT '
RECORDING ..
OSCILLOSCOPE

CAE A TR
s
“ "

. y FPigure 6. Recording System Calibration Scheme

- The overall system accuracy was:

Linearity = 0.22 full scale;

Amplitude Resolution - 0.05% full scale;
Time Resolution = 0.2% range;

Amplifier Gain - 100 + 0.027%.

’
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D. Laser Calibration

Since the laser output cannot be monitored without disturbing the beam,

TR,

the laser was calibrated by determining the relationship between output

radiation and input current. The photon drag detector provided the output

data and the laser control panel's current monitor supplied both the input N
data and the triggering pulse to the recording system. In both the single q
pulse and the multipulse modes, the duration of the output pulse was about -
250 microseconds iess than that of the current pulse. The ocutput pulse showed .
a delay of about S0 microseconds from the input pulse, i

For each calibration test series, the laser beam was focused over the
active area of the temperature gage. The gage was then removed and the beam

15
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placed in multipulse mode. The energy delivered by each pulse was calculated
usaing the average power, the frequency, and the period of the duty cycle. The
power was measured by the infrared meter and the last two ¢uantities
determined by the photon drag detector.

Figure 7 shows a schematic of tte calibration setup.

IR POWER |R PHOTO-
METER DETECTOR

D D I e
GERMANIUM
FOCUSING LENS

LASER CONTROL

AND
m k—— rPower supPLY
TRANSIENT
RECORDING
OSCILLOSCOPE

Figure 7. Laser Syatem Calibration Schewe

E. Gage Calibration

Once the laser output parameters were established, the test gage was
inserted into the beam as shown in Figure 8. The gage output voltages were
recorded for both single and multipulse modes. Figures 9 and 10 show the
typical gage response to a single pulse and to multiple pulses, respectively.

The results of the calibration trials are shown in Figuie 11,

16
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» Figure 8. Gage Calibration Setup
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Figure 9. Typical Gage Response to Single Laser Pulse
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IV. RESULTS

A. E:ge Reazonne

The operating response of the gage ranged from one to 250 milliseconds.
Pulses shorter than ome millisecond could not be measured, and pulses longer
than 250 milliseconds caused saturation of the gage, with full saturation
occurring at about 200 milliseconds.

Figures 12 and 13 show typical field measurements for the front and rear
thermocouples. The calculation shown in Figures 3 and 4 indicates that the
actual peak surface temperature of the gage can be 207 higher than the front
thermocouple measures, This discrepancy is larger during the pulse's rise.
Because of this uncertainty in the measured temperatures, the approximations
for heat flux density and heat deposition yielded only average values over the
interval At shown in Figures 12 and 13.

B. Evaluation of Peat Flux Deunsity

The approximation for flux demsity, Eq. (13), and the analytical
relation, Eq. (7), do not describe the gage operation well, This is due to
the extreme sensitivity of differentiation to aignal noise and to
discontinuities caused by digitization. A satisfactory estimate of the
average flux density was obtained by dividing the total deposition by the time
of deposition, At:

2
q' = Q'/8t Cal/cm sec (15)
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Figure 12. Typical Field Measuremeut by Front Thermocouple
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C. Evaluation of Heat Deposition

The approximation for heat depositiom, Eq. (14), provided a reasonable
description of the gage operation. Least squares calculations showed the
deposition density function and its coefficients to be

AT, + AT
Q' = 0.0918 [—rmB) 14739 ga1/cn?, (16)

where AT; and AT, were determined as shown in Figures 12 and 13. Figure 14
compares this calculated deposition density with the measured data.

V. CORCLUSIONS

The gage as presently constituted performs reasonably well as a thermal
flux gage, although design changes could simplify both the data acquisition
and analysis. Such changes include adoption of a two-wire ghielded
thermocouple and vapor-deposited thermocouple junctions. The two-wire system
would reduce the number of necessary data channels to one per gage, thus
eliminating the differencing step in the analysis. Use of the vapor-deposited
junctions would allow more accurate measurement of the gage surface
temperature.
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APPERDIX

Figures Al through A5 are detailed engineering drawirgs of the gage fully
assembled and its constituent parts.
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